Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282569

RESUMO

Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host-parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Polydnaviridae/genética , Filogenia , Vespas/genética , Proteínas Virais/genética , Evolução Biológica
2.
J Virol ; 96(13): e0052422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35678601

RESUMO

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Assuntos
Nudiviridae , Transcrição Viral , Vespas , Animais , DNA Viral/genética , Nudiviridae/genética , Proteínas do Complexo da Replicase Viral , Vespas/virologia
3.
Neuropathol Appl Neurobiol ; 48(5): e12816, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35338505

RESUMO

AIM: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by survival of motor neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the unfolded protein response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS: We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS: We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS: We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.


Assuntos
Fator 6 Ativador da Transcrição , Endorribonucleases , Atrofia Muscular Espinal , Proteínas Serina-Treonina Quinases , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 1 de Ligação a X-Box , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
4.
Curr Opin Insect Sci ; 50: 100876, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065285

RESUMO

The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.


Assuntos
Elementos de DNA Transponíveis , Inativação Gênica , Animais , Antivirais , Insetos/genética , RNA Interferente Pequeno/genética
6.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
7.
Nucleic Acids Res ; 46(21): 11405-11422, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30321409

RESUMO

Tauopathies such as Alzheimer's Disease (AD) are neurodegenerative disorders for which there is presently no cure. They are named after the abnormal oligomerization/aggregation of the neuronal microtubule-associated Tau protein. Besides its role as a microtubule-associated protein, a DNA-binding capacity and a nuclear localization for Tau protein has been described in neurons. While questioning the potential role of Tau-DNA binding in the development of tauopathies, we have carried out a large-scale analysis of the interaction of Tau protein with the neuronal genome under physiological and heat stress conditions using the ChIP-on-chip technique that combines Chromatin ImmunoPrecipitation (ChIP) with DNA microarray (chip). Our findings show that Tau protein specifically interacts with genic and intergenic DNA sequences of primary culture of neurons with a preference for DNA regions positioned beyond the ±5000 bp range from transcription start site. An AG-rich DNA motif was found recurrently present within Tau-interacting regions and 30% of Tau-interacting regions overlapped DNA sequences coding for lncRNAs. Neurological processes affected in AD were enriched among Tau-interacting regions with in vivo gene expression assays being indicative of a transcriptional repressor role for Tau protein, which was exacerbated in neurons displaying nuclear pathological oligomerized forms of Tau protein.


Assuntos
DNA Intergênico/genética , DNA/química , Neurônios/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Animais , Encéfalo/embriologia , Imunoprecipitação da Cromatina , Hipertermia Induzida , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ligação Proteica , Tauopatias , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Genes (Basel) ; 8(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120392

RESUMO

Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.

9.
PLoS One ; 10(12): e0145596, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26698123

RESUMO

Termites are eusocial insects related to cockroaches that feed on lignocellulose. These insects are key species in ecosystems since they recycle a large amount of nutrients but also are pests, exerting major economic impacts. Knowledge on the molecular pathways underlying reproduction, caste differentiation or lignocellulose digestion would largely benefit from additional transcriptomic data. This study focused on transcriptomes of secondary reproductive females (nymphoid neotenics). Thirteen transcriptomes were used: 10 of Reticulitermes flavipes and R. grassei sequenced from a previous study, and two transcriptomes of R. lucifugus sequenced for the present study. After transcriptome assembly and read mapping, we examined interspecific variations of genes expressed by termites or gut microorganisms. A total of 18,323 orthologous gene clusters were detected. Functional annotation and taxonomic assignment were performed on a total of 41,287 predicted contigs in the three termite species. Between the termite species studied, functional categories of genes were comparable. Gene ontology (GO) terms analysis allowed the discovery of 9 cellulases and a total of 79 contigs potentially involved in 11 enzymatic activities used in wood metabolism. Altogether, results of this study illustrate the strong potential for the use of comparative interspecific transcriptomes, representing a complete resource for future studies including differentially expressed genes between castes or SNP analysis for population genetics.


Assuntos
Proteínas de Insetos/genética , Isópteros/genética , Reprodução/genética , Transcriptoma , Animais , Biologia Computacional , Feminino , Genética Populacional , Isópteros/classificação , Isópteros/crescimento & desenvolvimento
10.
J Virol ; 86(20): 11333-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22896612

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.


Assuntos
Fatores de Coagulação Sanguínea/genética , DNA/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Chlorocebus aethiops , Imunoprecipitação da Cromatina , DNA/metabolismo , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Interferon beta/genética , Análise Serial de Proteínas , RNA Mensageiro/genética , Febre do Vale de Rift/genética , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Transcrição Gênica , Células Vero , Proteínas não Estruturais Virais/análise
11.
PLoS One ; 3(9): e3249, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18813361

RESUMO

BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.


Assuntos
Drosophila melanogaster/genética , Inativação Gênica , Telômero/ultraestrutura , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Elementos de DNA Transponíveis , Epigênese Genética , Regulação da Expressão Gênica , Modelos Biológicos , Modelos Genéticos , Fenótipo , Interferência de RNA , Temperatura , Transgenes
12.
PLoS Pathog ; 4(1): e13, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18225953

RESUMO

Rift Valley fever virus (RVFV) nonstructural protein NSs acts as the major determinant of virulence by antagonizing interferon beta (IFN-beta) gene expression. We demonstrate here that NSs interacts with the host protein SAP30, which belongs to Sin3A/NCoR/HDACs repressor complexes and interacts with the transcription factor YY1 that regulates IFN-beta gene expression. Using confocal microscopy and chromatin immunoprecipitation, we show that SAP30, YY1, and Sin3A-associated corepressor factors strongly colocalize with nuclear NSs filaments and that NSs, SAP30 and Sin3A-associated factors are recruited on the IFN-beta promoter through YY1, inhibiting CBP recruitment, histone acetylation, and transcriptional activation. To ascertain the role of SAP30, we produced, by reverse genetics, a recombinant RVFV in which the interacting domain in NSs was deleted. The virus was unable to inhibit the IFN response and was avirulent for mice. We discuss here the strategy developed by the highly pathogenic RVFV to evade the host antiviral response, affecting nuclear organization and IFN-beta promoter chromatin structure.


Assuntos
Histona Desacetilases/metabolismo , Interferon beta/metabolismo , Proteínas Repressoras/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Proteínas não Estruturais Virais/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Histona Desacetilases/genética , Interferon beta/genética , Camundongos , Microscopia Confocal , Mutação , Complexo Correpressor Histona Desacetilase e Sin3 , Técnicas do Sistema de Duplo-Híbrido , Células Vero , Proteínas não Estruturais Virais/genética , Virulência
13.
PLoS Genet ; 3(9): 1633-43, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17941712

RESUMO

The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3-7) and the repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA) silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA) silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.


Assuntos
Epigênese Genética , Inativação Gênica , Heterocromatina/genética , RNA/genética , Telômero , Animais , Homólogo 5 da Proteína Cromobox , Elementos de DNA Transponíveis , Proteínas de Drosophila , Drosophila melanogaster , Feminino , Mutação , RNA Interferente Pequeno , Transgenes
14.
Genetica ; 117(2-3): 327-35, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12723712

RESUMO

Autonomous P elements, inserted in heterochromatic telomeric associated sequences (TAS) at the X chromosome telomere (site 1A) have strong P element regulatory properties that include repression of P-induced hybrid-dysgenesis and of P-lacZ expression in the germline. P-lacZ insertions or defective P elements at 1A in TAS can also repress in trans a euchromatic P-lacZ in the germline. This property has been called a trans-silencing effect (TSE). It requires some sequence-homology between the telomeric insertion and the euchromatic transgene. When repression is partial, variegating lacZ expression is observed, suggesting a chromatin-based component. TSE is observed only when the silencer transgenes are maternally inherited and occurs only in the female germline. We have evidence that this silencing also works in the presence of homologous non-P element sequences suggesting that homology-dependent silencing could be a general phenomenon in the female germline; such a system might have been subsequently adopted by the P element family, allowing its own repression.


Assuntos
Drosophila/genética , Telômero/genética , Transgenes/genética , Animais , Proteínas de Drosophila/genética , Feminino , Inativação Gênica , Masculino , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...